Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure
نویسندگان
چکیده
The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the effect the myostracal layer has on subsequent nacre structure. Here we present data on the structure of the myostracal and nacre layers from a bivalve mollusc, Pinctada fucata. Scanning electron microscope imaging shows the myostracal layer consists of regular crystalline blocks. The nacre before the layer consists of tablets approximately 400 nm thick, while after the myostracal layer the tablets are approximately 500 nm thick. A new technique, imaging polarimetry, indicates that the aragonite crystals within the nacre following the myostracal layer have greater orientation uniformity than before the myostracal layer. The results presented here suggest a possible interaction between the myostracal layer and subsequent shell growth.
منابع مشابه
The effects of exposure to near-future levels of ocean acidification on shell characteristics of Pinctada fucata (Bivalvia: Pteriidae)
Atmospheric carbon dioxide concentrations have greatly increased since the beginning of the industrial age. This has led to a decline in global ocean pH by 0.1 units, and continued decline of 0.3–0.5 units is predicted by the end of 2100. Acidification of the ocean has led to decreased calcification rates and dissolution of calcareous structures in a range of marine species. Shells of the pearl...
متن کاملPolarimetry of Nacre in Iridescent Shells
We investigate the light transmitted or reflected from nacre (mother of pearl) taken from the iridescent shell of the bivalve Pinctada fucata. These nacre surfaces have a rich structure, composed of aragonite crystals arranged as tablets or bricks, 5 μm wide and 400-500 nm thick, surrounded by 30nm thick organic mortar. The light reflected from these shell surfaces, or transmitted through thin ...
متن کاملDeep Sequencing of ESTs from Nacreous and Prismatic Layer Producing Tissues and a Screen for Novel Shell Formation-Related Genes in the Pearl Oyster
BACKGROUND Despite its economic importance, we have a limited understanding of the molecular mechanisms underlying shell formation in pearl oysters, wherein the calcium carbonate crystals, nacre and prism, are formed in a highly controlled manner. We constructed comprehensive expressed gene profiles in the shell-forming tissues of the pearl oyster Pinctada fucata and identified novel shell form...
متن کاملThe pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization
Nacre, the iridescent material found in pearls and shells of molluscs, is formed through an extraordinary process of matrix-assisted biomineralization. Despite recent advances, many aspects of the biomineralization process and its evolutionary origin remain unknown. The pearl oyster Pinctada fucata martensii is a well-known master of biomineralization, but the molecular mechanisms that underlie...
متن کاملControl of nacre biomineralization by Pif80 in pearl oyster
Molluscan nacre is a fascinating biomineral consisting of a highly organized calcium carbonate composite that provides unique fracture toughness and an iridescent color. Organisms elaborately control biomineralization using organic macromolecules. We propose the involvement of the matrix protein Pif80 from the pearl oyster Pinctada fucata in the development of the inorganic phase during nacre b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2017